If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=1600
We move all terms to the left:
2x^2-(1600)=0
a = 2; b = 0; c = -1600;
Δ = b2-4ac
Δ = 02-4·2·(-1600)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*2}=\frac{0-80\sqrt{2}}{4} =-\frac{80\sqrt{2}}{4} =-20\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*2}=\frac{0+80\sqrt{2}}{4} =\frac{80\sqrt{2}}{4} =20\sqrt{2} $
| 1.2y=2+y | | 1.2y-y=2 | | x-7=(x-13)*2 | | 60=17b-b^2 | | 2^x*4^x=8 | | 6(3a-4)=4(9+6) | | 2^x+4=1 | | y=150(1+0.08)45 | | 5+4x=x+19 | | 96+4x=28 | | 6q^2+37q=0 | | x^2+8x=-65 | | 4y-5=3y=1 | | 10x+9=7x-9 | | 8(x-2)=4(x+5) | | 2y-0.5=0 | | x/3+x/9=6 | | 10x=22/5 | | 7(a-30)=10a | | f(10)=-2(10)+4 | | -3x+15=2x+45 | | -12=10x-40x+3 | | f(34)=3*34+7 | | (3/4)x=61.5 | | 7/5y=y-2/5y | | 7/5y=y+2/5y | | Y+.32y=1.32y | | Y+14=2y | | +14=2x | | 21=x(.3) | | 1x+1.5x+3x=49 | | 1x+1.5x+3=49 |